Как устроен электромобиль схема
Перейти к содержимому

Как устроен электромобиль схема

  • автор:

IT News

Вы здесь: Главная Познавательное Все о транспорте Принцип работы и устройство электромобиля

Принцип работы и устройство электромобиля

  • Печать
  • E-mail

Электромобили двигаются под действием электричества, которое первоначально попадает к ним из обычной домашней электросети и запасается в автомобильных перезаряжаемых аккумуляторах.

Такому автомобилю не нужна коробка передач, применяемая в двигателях внутреннего сгорания. Потому что вал электродвигателя здесь присоединен прямо к колесу. Электричество питает мотор, и мотор крутит колесо, которое двигает машину. Сейчас сделаны опытные электромобили с одноразовым запасом энергии на борту, достаточным для 130-мильного пробега. Эти автомобили намного меньше загрязняют окружающую среду и работают значительно тише, чем автомобили, «кушающие» бензин. Пожалуй, главным недостатком электромобиля является то, что ему требуется шесть часов на полную зарядку аккумуляторов.

Автомобиль с автоматической коробкой передач

Если взглянуть на приборную панель электромобиля (рисунок выше), то видно, как просто сделан рычаг управления передачами, — по той причине, что в машине нет коробки передач. Все, что должны показывать приборы на панели, это число оборотов в минуту двигателя, скорость автомобиля и уровень зарядки электрической батареи.

Каким образом электрическая энергия вращает колеса

Принципиальная схема электромобиля

Электромобиль движется под действием электрической энергии, которую он первоначально запасает в своих аккумуляторах (рисунок ниже). При движении автомобиля электрическая энергия приходит на электромагнитный разъем. Оттуда под управлением водителя и сигналов от датчиков энергия поступает на электродвигатели, которые крутят колеса и заставляют автомобиль двигаться.

Подзарядка «севших» аккумуляторов электромобиля

Схема заряда аккумуляторов электромобиля

Электро-зарядное устройство автомобиля нужно для того, чтобы бортовые аккумуляторы накопили новую электрическую энергию взамен истраченной на движение автомобиля. Устройство получает энергию для зарядки через обычную электро-розетку, какие стоят в жилых домах.

Энергия передается прямо на колеса

Мощный постоянный магнит, находящийся внутри электродвигателя, позволяет вращать колесо без ведущего вала и шестеренок, применяемых в обычных автомобилях. Поэтому в электромобиле нет дифференциала, передаточных устройств с шестеренками и коробки передач. Энергия там идет от электродвигателя прямо на колеса.

В модели электромобиля «Дестини 2000» ( Destiny 2000 ) сочетается применение солнечных панелей и аккумуляторов с кузовом из стекловолокна.

Вы здесь: Главная Познавательное Все о транспорте Принцип работы и устройство электромобиля

Популярные материалы из данной категории:

Что собой представляют канатные дороги?

Вагон канатной дороги доставляет пассажиров на один из холмов Сан-Франциско. В тех местах, где подъемы слишком круты для движения обычных поездов, вагоны канатных дорог спокойно двигаются вверх и вниз. Вагоны современных канатных дорог поднимают и опускают…

Схема передачи энергии в автомобиле

Как устроен и как работает автомобиль?

Схема передачи энергии в автомобиле Можно дать такое определение автомобилю: это механическое устройство, которое освобождает скрытую энергию бензина и, управляя освобожденной энергией, использует ее для вращения колес. Бензиновое топливо по очереди…

Как устроен и как работает мотоцикл?

Подобно автомобилю мотоцикл «кушает» бензин, чтобы получить энергию для своего движения. Существенное отличие между ними заключается в том, что мотоцикл имеет всего два колеса. Энергия двигателя у него передается на заднее колесо.

Как работает паровоз?

Изображение паровоза кликабельно Паровоз использует энергию пара высокого давления. Этот перегретый пар толкает ряд поршней, которые с помощью соединительных тяг ( рисунок ниже) заставляют вращаться колеса. Относительная простота конструкции и надежность…

Устройство электромобиля

Устройство электромобиля

Последнее десятилетие электромобили уверенно завоевывают рынок автотранспортных средств.

Этому способствует множество факторов:

Устройство электромобиля

  • малая концентрация вредных выбросов авто в окружающую среду при работе электродвигателей;
  • меньший уровень шума, создаваемый двигателем;
  • более низкая стоимость восполнения энергетического потенциала по сравнению с автомобилями на двигателях внутреннего сгорания;
  • меньшее количество механических движимых деталей и узлов электродвигателя по сравнению с ДВС;
  • возможность технических решений без коробки переключения передач.

Массовый переход к электротранспорту тормозят следующие не полностью решенные проблемы и недостатки электромобилей:

  • низкая емкость аккумуляторных батарей, соответственно, небольшой пробег авто без подзарядки;
  • высокая стоимость блока аккумуляторов, недолговечность;
  • неразвитая сеть подзарядочных станций, большое время обслуживания (заряда) аккумуляторов даже в скоростном режиме;
  • наличие в электрических блоках управления и электропроводке высоких, опасных для водителя и пассажиров, напряжений;
  • утилизация аккумуляторных батарей электромобилей наносит вред окружающей среде;
  • большинство электронных блоков автомобилей, в том числе и аккумуляторная батарея, ремонтируются агрегатным методом, то есть заменяются полностью на исправные;
  • ресурс работы современных электродвигателей недостаточно большой;
  • работа системы отопления салона авто в холодное время года значительно увеличивает энергопотребление электромобиля;
  • остаются нерешенными проблемы использования электромобилей в грузоперевозках на дальние расстояния.

Очевидно, этот список значительно длиннее.

Разработчики ведущих автопроизводителей совершенствуют устройство электромобиля (электродвигатели, аккумуляторные батареи, зарядные станции и др.), приближая эру электротранспортных средств индивидуального пользования.

Электродвигатель

Электродвигатель в электромобиль

В терминологии автомобилестроения дается четкое понятие, что такое электромобиль: «Транспортное средство, основным движителем которого является электропривод».

Одним из основных преимуществ электродвигателя по сравнению с ДВС является высокий коэффициент полезного действия – до 95%. Считается, что электромобиль абсолютно экологичен. Это не совсем так. Производство электроэнергии в большинстве стран базируется на теплоэлектростанциях, которые сжигают топливо, нанося вред окружающей среде. Не менее опасны АЭС. Развитие рынка электромобилей рационально рассматривать с увеличением доли «зеленой» электроэнергии: солнечные батареи, энергия ветра и другие.

В системах авто с ДВС применяются в основном электродвигатели постоянного тока: стартеры, приводы щеток, вентиляторов, бензонасоса, различных регуляторов. Эти электродвигатели для передачи тока к вращающемуся ротору используют систему «щетки-коллектор», поэтому называются коллекторные. В электромобилях для обеспечения высокого вращающего момента необходимо протекание больших токов. Искрение щеток во время движения по ламелям коллектора приводят к преждевременному износу этой зоны. Поэтому в электромобилях обычно применяют бесколлекторные двигатели.

Для того чтобы уменьшить величину тока, протекающего через обмотки электродвигателя, согласно закону Ома, необходимо увеличивать питающее напряжение. В этом смысле наиболее эффективны трехфазные электродвигатели переменного тока: синхронные (например, на Mitsubishi i-MiEV) или асинхронные (на Chevrolet Volt).

Сейчас ведутся разработки высокоэффективных электродвигателей с минимальными размерами и массой. Привод от производителя Yasa Motors имеет массу 25 кг, достигая крутящего момента 650 Нм. Самый мощный электромобиль Venturi VBB-3 имеет электродвигатель 3 тыс. л. с.

Аккумуляторная батарея электромобиля

Аккумулятор

Тяговая аккумуляторная батарея электромобиля имеет существенные отличия от АКБ автомобилей с ДВС.
Прежде всего, выходное напряжение аккумуляторных батарей электромобилей с целью уменьшения токов, соответственно тепловых и энергопотерь, значительно выше, чем традиционные 12 вольт. Например, в первые автомобили марки Lola-Drayson разработчики выбирали аккумуляторные батареи емкостью 60 кВт*час номинальным напряжением 700 В. Нетрудно подсчитать, что при мощности электродвигателя 200 кВт такой автомобиль может проехать без подзаряда не более 15 минут. В условиях кольцевых автогонок на спортивных электрокарах необходимо производить замену аккумулятора чаще, чем колес. Гоночный электромобиль ближайшего будущего способен разогнаться до 100 км/час за одну секунду.

Большинство аккумуляторных батарей для электромобилей имеет встроенный контроллер процесса заряда батареи по аналогии с аккумуляторами для ноутбуков, только на более высоком уровне. Кроме этого, в мощные аккумуляторные блоки устанавливают встроенную систему жидкостного охлаждения, которая также увеличивает их массу.

Трансмиссия электромобилей

Один из положительных технических моментов при проектировании электромобилей – возможность упрощенной трансмиссии. Некоторые модели имеют одноступенчатый редуктор. В электромобилях с двигателями, вмонтированными в колеса (Active Wheel), трансмиссионная функция выполняется электронным методом. Это позволяет применить еще одну важную опцию: восполнение заряда аккумуляторной батареи в момент торможения «электродвигателем». Такой метод уже давно применяется в электротранспорте.

Особенность блоков управления электромобилей

Электрическая схема электромобиля имеет свои особенности в схемотехнике узлов контроля и управления. Большинство электрических систем в электромобилях строятся по традиционным схемам, рассчитанным на напряжение бортовой сети 12 В. Поэтому необходима установка в электромобиль дополнительной схемы инверторного преобразователя напряжения высокого напряжение аккумулятора в напряжение бортовой сети 12 В. В большинство моделей устанавливается дополнительная 12-вольтная аккумуляторная батарея небольшой емкости. Принцип работы основных систем электромобиля (ABS, ESP, кондиционера и других) не меняется.

Для обеспечения максимальной эффективности использования емкости аккумуляторной батареи климат-контроль автомобиля в холодное время года использует предподогрев от стационарных источников перед поездкой, затем энергия батареи расходуется только на поддержание температуры в салоне машины. Поэтому особое внимание конструкторы уделяют применению современных теплоизоляционных материалов в отделке салона. Актуально в этом смысле использование нанотехнологичных материалов.

Системы световых излучателей машины (повороты, ближний/дальний, габариты, салонные и другие) используются, в основном, светодиодного энергосберегающего типа. Принцип работы электрооборудования автомобиля основан на бесконтактных электронных системах управления.

Блок управления электродвигателем (двигателями) представляет, по сравнению с аналогичными блоками для ДВС, высокопроизводительный вычислительный комплекс, который контролирует работу большинства энергозначимых узлов с точки зрения достижения максимальной эффективности использования емкости аккумуляторной батареи. Он производит:

  • распределение энергии между электроприводами;
  • регулирование тяги;
  • мониторинг узлов и систем электромобиля;
  • управление динамикой авто;
  • контроль напряжений питания бортовых систем;
  • использование дистанционного мониторинга.

Электромобиль не роскошь

Перспективы электромобилей ближайшего будущего:

  • пробег без подзаряда до 500 км;
  • динамика разгона – менее 3 секунд до 100 км/час (легковые электромобили);
  • стоимость аккумуляторной батареи средней мощности – менее 7 тыс. USD;
  • время быстрого заряда – менее 15 минут.

Электромобиль ближайшего будущего будет оснащен беспилотными системами управления и навигации.

Электромобиль беспилотный

Если вы решили присоединиться к пока немногочисленной армии электромобилистов, прежде всего необходимо изучить, как работает электромобиль и его основные системы.

Несколько советов при решении задачи, какой электромобиль выбрать:

  • без пробега или с небольшим сроком эксплуатации, но с новой аккумуляторной батареей;
  • с опцией быстрого заряда аккумулятора;
  • со стажем выпуска модели не менее 2-х лет (за это время проблемы электромобилей данного модельного ряда успеют проявить себя).

Будущее – за электромобилями!

Как устроен электромобиль?

В этом тексте я попробовал сфантазировать, как мог бы быть устроен абстрактный электромобиль. Что у него должно быть внутри и как агрегаты автомобиля соединено в единую систему между собой? Иначе говоря, какова архитектура электромобиля?

Инфу пришлось добывать из видеоуроков на YouTube и с флаеров сайтов производителей электро-деталей.

Попробуем понять, какой путь проходит электричество начиная от зарядной розетки заканчивая колесами автомобиля.

Когда речь идет об архитектуре чего-лило, то тут есть 2 способа представления. Либо объяснять всё словами либо рисовать картинку. В этом вопросе я предпочитаю следовать английской пословицы

Поэтому я скомпоновал схему анатомии электромобиля.

Итак, вот схема электромобиля так как я её себе представляю. Понятное дело, что схему надо рассматривать не на листочке A4, а в специальном редакторе векторной графики с увеличением и со слоями. Если кому-то нужен исходник схемы в *.svg, то пишите в личку.

блок схема агрегатов электромобиля

Каждый агрегат электрокара: контроллер зарядки, BMS, инвертор, ABS, ESP, BCU, это, в сущности, устройства на микроконтроллерах. В электромобиле нет ничего механического кроме редуктора на оси двигателя. А мощные процессоры там максимум только в HMI для проигрывания видео. Видимо поэтому электромобили долгое время не появлялись так как до 1980х не было элементной базы для управления ключами инверторов. Я имею в виду мощные и дешевые микроконтроллеры.

Теперь посмотрим под увеличением конкретные места схемы.

Контроллер заряда

Как известно, есть быстрая зарядка постоянным током, а есть медленная от переменного тока. Подозреваю, что выбор режима зарядки происходит по интерфейсу передачи данных по проводам питания PLC или по CAN.

Батарея

Батарея для электрического автомобиля это сотни последовательно соединенных аккумуляторных батареек как в фонариках по 3.7. 4,2V каждая. За состоянием всей батарей следит отдельная электронная плата называемая Battery Management System (BMS). Она следить за напряжением, током, температурой, заботится об охлаждении и нагревании батареи, может разрядить перезаряженную батарею, договориться с зарядной станцией по PLC или CAN и прочее.

Инвертор (Inverter)

Инвертор это по сути переходник постоянного тока в переменных ток (и обратно). Он вырабатывает модулированный трехфазный синусоидальный ток необходимый для вращения мотора. Этим занимается прошивка-spiner в микроконтроллере инвертора. Так как в инверторе очень часто переключаются силовые IGBT транзисторы, то инвертор также может работать в режиме нагревателя и нагревать остывающую батарею.
К контроллеру инвертора подключена педаль газа. Если все CAN устройства зависнут, то автомобиль хоть как-то сможет ездить.

Двигатель

Для вращения в электромобилях используют асинхронный электродвигатель. Он работает от переменного тока. Угловая скорость определяется частотой синусов в фазах тех трех силовых оранжевых проводах, что подключены к индукционному мотору. Обычно рядом с мотором прямо на его оси прикреплен механический редуктор. Редуктор нужен для увеличения крутящего момента на колесах. Также на оси электродвигателя есть датчик положения вала (Резольвер или СКВТ). Он сообщает инвертору, что двигатель в самом деле вертится.

Интерфейс управления (HMI)

За автомобилем надо как-то наблюдать. Для этого есть приборная панель и сенсорный экран. Эти приборы берут инфу из CAN шины и 100Base-T1 интерфейса. Часто есть мобильное приложение и за параметрами можно следить по BlueTooth LE. Можно вообще подключиться к CAN и посмотреть какие там циркулируют пакеты в Win приложении.

Рулевая рейка

Понятное дело что для поворота колес нужен высокий момент и малые скорости. Как известно высоким моментном на малых скоростях обладают шаговые двигатели. Но их там нет. Ведь шаговые двигатели тяжелые и дорогие. В электро-усилитель руля ставят BLDC мотор (бесколлекторный двигатель постоянного тока). Управляет им отдельный ECU рулевой рейки.
Также возможно там есть и чисто механическое руление через планетарный редуктор. Электроника ведь может отказать, микроконтроллер зависнуть. А планетарный редуктор фактически является сумматором крутящих моментов.

Периферия

В автомобиле целая куча всяких разных мелких электроприборов: фары, замки, стеклоподъемники, дворники, люки. Для управления ими ставят отдельные контроллеры. Обычно их называют Body Control Units (BCU).

В основном всё блоки соединены такими интерфейсами как CAN, LIN, K-LIne, 100Base-T1, A2B, FPD-Link, MOST, FlexRay.

Вот реестр с подборкой тех самых видеоуроков на основе которых я нарисовал эту схему

Вывод

По сравнению с двигателями внутреннего сгорания в электромобиле деталей мало. Всё выглядит просто. Допускаю, что в настоящих электромобилях всё несколько сложнее. Особенно в гиперкарах по 2M EUR.

Тут же нет ADAS, парковочных видеокамер. Также я не отражал на схема автомобильные игрушки как мультимедиа системы на задних сиденьях, имитация рычащего мотора из бутафорской выхлопной трубы, сервопривод антикрыла, подогрев стаканчиков, моторы открытия люков, авто лебётки и пр.

Если вам есть, что добавить, то пишите в комментариях.

В автомобильной технике как нигде очень много акронимов. Вот небольшой словарь для понимания автомобильных схем.

Акроним

Расшифровка

original design manufacturer

Устройство двигателя электромобиля

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции.В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

Принцип работы и устройство

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

устройство электродвигателя

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Виды

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

электродвигатель шевроле вольт

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

коллекторный ротор

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

бесколлекторный двигатель

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

мотор-колесо

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Преимущества и недостатки электродвигателей

Выделим достоинства электрических агрегатов:

  • высокий коэффициент полезного действия – до 95 процентов;
  • компактность, малый вес;
  • простота использования;
  • экологичность;
  • долговечность;
  • создается максимальный показатель крутящего момента на любой отметке скорости;
  • воздушное охлаждение;
  • способны функционировать в режиме генератора;
  • не нужна коробка передач;
  • возможность рекуперации энергии торможения.

В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.

электродвигатель от yasa motors

Электродвигатель Yasa Motors

Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Устройство электромобиля

Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

  • непосредственно электродвигатель;
  • питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;
  • упрощенная трансмиссия;
  • инвертор;
  • зарядное устройство на борту;
  • электронная система управления элементами конструкции;
  • преобразователь.

Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт⋅ч.

электрический спорткар

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

электродвигатель с редуктором

Электродвигатель с редуктором (вид снизу)

Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

  • аудиосистемы;
  • климат-контроля;
  • освещения;
  • отопительной системы;
  • прочих элементов.

Система управления организовывает такие процессы:

  • мониторинг используемой энергии;
  • управление рекуперацией энергии торможения;
  • оценка уровня заряда;
  • управление динамикой движения;
  • обеспечение необходимого режима перемещения транспортного средства;
  • регулировка тяги;
  • управление напряжением.

Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.

панель приборов автомобиля tesla

панель приборов Tesla

Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Высокая стоимость авто формируется в основном из-за цены на аккумуляторы, которые еще и имеют небольшой срок службы – до 7 лет. Это вынуждает специалистов искать новые решения для совершенствования технологии: литий — полимерные батареи, суперконденсаторы, топливные составляющие и прочие.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Слабым местом электромобиля является также невысокий уровень автономного функционирования, вызванный коротким километражем без подзарядки. Этот параметр определяется многими факторами:

  • стилем вождения;
  • условиями и скоростью передвижения;
  • емкостью используемых аккумуляторов;
  • уровнем использования дополнительного оборудования.

К примеру, при скорости 80 км/ч средний показатель дальности передвижения электрического транспортного средства составит около 140 км. Если же повысить скорость до 120 км/ч, этот показатель резко упадет до 80 км. Благодаря внедрению систем рекуперативного торможения степень автономности может повышаться до показателя в 300 км и более.

Как отмечалось, зарядка аккумулятора требует много времени, поэтому этот недостаток решается несколькими подходами:

  • замена батареи на заряженную (услугу могут предоставлять на специальных станциях);
  • ускоренная зарядка – за полчаса может зарядиться 80% емкости аккумулятора;
  • нормальный режим – продолжительность зарядки может составить 8 часов.

Устройство и особенности гибридных систем

Применение гибридных автомобилей не только имеет свои преимущества, например, экологические, но и преследует определенные цели действующих игроков автомобильного рынка. Компании намерены сохранить налаженное конвейерное производство двигателей внутреннего сгорания. А постоянное ужесточение норм выброса вредных веществ – лишнее тому подтверждение.

По сути, гибридные системы подразумевают использование электродвигателя как дополнительного элемента, который способствует повышению мощности и экономии топлива. Ведь все подобные машины начинают движение именно благодаря ДВС.

Гибридные системы условно можно разделить на подвиды:

  • Интегрированное содействие мотору.
  • Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.
  • Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

Различают также три вида «гибридов»:

  • Параллельный. В этом случае батареи передают энергию электродвигателю, а бак – топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.
  • Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.
  • Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

типы гибридных автомобилей

Большинство существующих сейчас гибридных автомобилей относятся к параллельным. Хорошим решением является транспортное средство с подзарядкой. Оно открывает новые эксплуатационные возможности, нивелируя недостаток ограниченности пробега. При исчерпании заряда аккумулятора в работу вступает ДВС малой мощности.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А рекуперативная система аккумулирует энергию.

Управление гибридным транспортным средством похоже на управление обычным автомобилем с автоматической коробкой передач. Только в этом случае обеспечивается низкий уровень шума, лучшая управляемость и повышенная мощность. При этом не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля.

Перспективы применения электродвигателей в автомобилях

Судя по текущим тенденциям, мировые лидеры автомобильной промышленности, политики и другие влиятельные лица всерьез взялись за то, чтобы развивать отрасль производства электрических автомобилей. Это видно по регулярно внедряемым нормам, которые постоянно повышают планку по выбросу максимального уровня вредных газов в атмосферу, и по мощной рекламной кампании, которая развернулась в медиапространстве в поддержку такого типа транспортных средств. В развитых странах с каждым годом растет количество заправочных станций, обеспечивающих зарядку электромобилей.

Поэтому открываются большие возможности инженерам для развития отрасли. И для этого есть два основных направления – адаптировать серийные автотранспортные средства или вести разработку новых моделей. Конечно, менее затратным мероприятием является усовершенствование существующих моделей.

Как раз европейские специалисты и занимаются улучшением нынешних гибридных двигателей, в то время как японские компании занялись совершенствованием обычного двигателя. Им удалось увеличить степень сжатия. При этом состав топлива остался неизменным.

В свою очередь, немецкие разработчики установили небывалый рекорд. Созданному электромобилю удалось проехать без подзарядки целых 600 км. Для автомобилей с ДВС это не показатель, однако электромобили могут похвастаться теперь и такими возможностями.

Дело в том, что даже Tesla, ведущий участник рынка, ещё не создал легкий аккумулятор, который смог вытянуть это расстояние. А в этом случае разработчикам удалось достичь показателя в 600 км.

Автомобиль проехал расстояние между двумя немецкими городами – Мюнхеном и Берлином. Его средняя скорость передвижения по трассе составила около 90 км/ч. Установление подобного рекорда стало возможным благодаря плодотворной работе предприятия DBM Energy, которое в тесном сотрудничестве с Lekker Energie создало такое решение.

электрокар Audi A2

В электромобиле была установлена аккумуляторная батарея емкостью 115 кВт/ч. Благодаря этому транспортное средство способно увеличивать мощность до 55 кВт, что отвечает приблизительно объему 1,4 Л для бензинового двигателя. Эффективность такой батареи доказывает установка в погрузчик, который способен увеличить время своей работы в четыре раза, если сравнивать действия с обычным аккумулятором. Именно этот емкостный агрегат был установлен на немецкий автомобиль Audi A2.

Может сложиться впечатление, что автомобиль «пустой», однако это не так. Организаторы эксперимента оснастили его всем необходимым: кондиционером, усилителем руля, аудиосистемами, системами безопасности и даже подогревом сидений. Поэтому потребление энергии, кроме перемещения, требовалось для выполнения и других функций.

Как стало известно, подобная технология находится на рассмотрении министерства экономики Германии, поэтому вполне возможно, что уже в скором времени эта отрасль получит новый толчок. Уже есть планы, по которым к 2020 году правительство страны намеревается достичь показателя в один миллион электрических автомобилей на европейских дорогах. Причем это не только транспортные средства личного пользования, но и другого назначения.

К тому же один из менеджеров компании Lekker Energie сообщил, что используемый аккумулятор на автомобиле А2 способен обеспечить общий пробег на уровне 500 тысяч километров.

Есть и еще один рекорд в этом направлении, поставленный Japan Electric Vehicle Club. Однако он касается чистого эксперимента. Это значит, что для повседневного использования такой электрокар не приспособлен. В результате японцам удалось побить рекорд – 1 тыс. км без подзарядки.

Какие бы разработки не велись в этой области, они сводятся к тому, что их должны поддержать гиганты автомобильной промышленности. Только им под силу внедрить достойное новшество, распространяя его по всему миру, создавая необходимую инфраструктуру, сервис и прочие необходимые средства. Все это требует больших затрат, поэтому предложенная идея может быть воплощена в жизнь, если расчеты по ее реализации дадут действительно существенную прибыль и установят новую планку стандартов на мировом рынке.

Тем не менее, учитывая текущее положение вещей, вряд ли стоит предполагать, что уже очень быстро электромобили займут свою большую нишу в автомобилестроении. И важный фактор, притормаживающий прогресс — психология человека. Очень непросто переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Электромобиль Tesla

Электромобиль Tesla Model S

Но тенденция к изменению отношения к такому явлению, как электрокар, уже проявляется. Сегодня все больше подобных автомобилей можно встретить на дорогах не только Европы, но и России. Пусть их еще немного, но их дополняют бесплатные зарядные станции в некоторых странах, позволяющие перемещаться на большие расстояния. Поэтому электрический транспорт постепенно становится естественным участником дорожного движения, закладывая фундамент новой эры машиностроения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *