Шестеренки как работают
Перейти к содержимому

Шестеренки как работают

  • автор:

Виды зубчатых колес, шестерен

Виды шестерен

Обычно шестерни имеют профиль зубьев с эвольвентной боковой формой. Так как эвольвентное зацепление имеет ряд преимуществ перед остальными: форма этих зубьев соответствует условиям их прочности, зубья легко изготовить и обработать, шестерни не чувствительны к точности установки. Тем не менее, существуют зубчатые передачи с циклоидальной формой профиля зубьев, а так же с шестернями с круговой формой профиля зубьев, например — передача Новикова. Помимо этого, применяется несимметричный профиль зуба, например в храповых механизмах.

Параметры эвольвентной шестерни:

Параметры эвольвентной шестерни

Модуль шестерни (m) – это основной параметр, который определяется из прочностного расчёта зубчатых передач. Чем сильнее нагрузка на передачу, тем больше значение модуля, единица измерения модуля – миллиметры.

Расчет модуля шестерни:

d — диаметр делительной окружности

z — число зубьев шестерни

p — шаг зубьев

da — диаметр окружности вершин темной шестерни

db — диаметр основной окружности — эвольвенты

df — диаметр окружности впадин темной шестерни

haP+hfP — высота зуба темной шестерни, x+haP+hfP — высота зуба светлой шестерни

В машиностроении приняты стандартные значения модуля зубчатого колеса для удобства изготовления и замены зубчатых колёс, представляющие собой числа от 1 до 50.

Высота головки зуба — haP и высота ножки зуба — hfP в случае, так называемого, «нулевого» зубчатого колеса соотносятся с модулем m следующим образом: haP = m; hfP = 1,2 m, то есть:

Отсюда получаем, что высота зуба h = 2,2m

Так же можно практически вычислить модуль шестерни, при этом, не имея всех данных для определения модуля, по следующей формуле:

Продольная линия зуба

Прямозубые шестерни

Прямозубые шестерни — самый применяемый тип зубчатых колёс. Зубья расположены в радиальных плоскостях, линия контакта зубьев пары зубчатых колес параллельна оси вращения, как и оси обеих зубчатых колес (шестеренок) располагаются строго параллельно.

Косозубые шестерни

Косозубые шестерни – это модернизированная версия прямозубых шестерен. Зубья, в таком случае, расположены под углом к оси вращения. Зацепление зубьев этих шестерен происходит тише и плавнее, чем у прямозубых. Они применяются либо в малошумных механизмах, либо в тех которые требуют передачи большого крутящего момента на больших скоростях. К недостаткам этого типа шестерен можно отнести: увеличенную площадь соприкосновения зубьев, что вызывает значительное трение и нагрев деталей, а вследствие: потеря мощности и дополнительное использование смазочных материалов; так же механическая сила, направленная вдоль оси шестеренки, вынуждает применять упорные подшипники для установки вала.

Шевронные колёса

Шевронные шестерни решают проблему механической осевой силы, которая возникает в случае применения косозубых колес, так как зубья шевронных (елочных) колёс изготавливаются в виде буквы «V» (или же они образовываются стыковкой двух косозубых колёс со встречным расположением зубьев). Осевые механические силы обеих половин шевронной шестерни взаимно компенсируются, поэтому нет нет необходимости использования упорных подшипников для установки валов. Шевронная передача является самоустанавливающейся в осевом направлении, в следствии чего, в редукторах с шевронными колесами один из валов устанавливают на подшипниках с короткими цилиндрическими роликами — плавающих опорах.

Шестерни с внутренним зацеплением

Шестерни такого типа имеют зубья, нарезанные с внутренней стороны. При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше КПД. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в шестеренных насосах, в приводе башни танка.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Секторные шестерни

Секторная шестерня – это часть (сектор) шестерни любого типа, она позволяет сэкономить в габаритах полноценной шестерни, так как применяется в передачах, где не требуется вращение этого зубчатого колеса (шестеренки) на полный оборот.

Шестерни с круговыми зубьями

Шестерни этого типа имеют линию зубьев в виде окружности радиуса, за счет этого контакт в передаче происходит в одной точке на линии зацепления, которая располагается параллельно осям шестерен. Передачи с круговыми зубьями «Передача Новикова» имеет лучшие ходовые качества, чем косозубые – высокую плавность хода и бесшумность, высокую нагрузочную способность зацепления, но при одинаковых условиях их ресурс работы и КПД ниже, к прочему изготовление этих шестерен значительно сложнее. Поэтому применение таких шестеренок ограниченно.

Конические шестерни

Конические шестерни имеют различные виды, отличаются они по форме линий зубьев, с прямыми, с криволинейными, с тангенциальными, с круговыми зубьями. Применяются конические зубчатые передачи в машинах для движения механизма, где требуется передать вращение с одного вала на другой, оси которых пересекаются. Например, в автомобильных дифференциалах, для передачи момента от двигателя к колесам.

Зубчатая рейка

Зубчатая рейка является частью зубчатого колеса с бесконечным радиусом делительной окружности. Вследствие этого ее окружности представляют собой прямые параллельные линии. Эвольвентный профиль зубчатой рейки тоже имеет прямолинейное очертание. Это свойство эвольвенты является наиболее важным при изготовлении зубчатых колёс. Передачу с применением зубчатой планки (рейки) называют — реечная передача (кремальера), она используется для преобразования вращательного движения в поступательное и наоборот. Состоит передача из зубчатой рейки и прямозубого зубчатого колеса (шестеренки). Применяется такая передача в зубчатой железной дороге.

Звездочка

Шестерня-звезда — это основная деталь цепной передачи, которая используется совместно с гибким элементом — цепью для передачи механической энергии.

Коронная шестерня

Коронная шестерня – это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой или с барабаном (цевочное колесо), состоящим из стержней. Такая передача используется в башенных часах.

Шестеренки в живом организме, это не научная фантастика — это реальность!

Принято считать, что зубчатое колесо — одно из ключевых изобретений человечества, оказавшее огромное влияние на формирование облика нашей цивилизации.

И с этим трудно поспорить. Ведь, ежедневно сотни людей в мире, пользуются великим многообразием механических устройств, неотъемлемой частью которых является простая шестеренка.

Детские игрушки, часы, швейные машинки, металлообрабатывающие станки, самолеты, корабли, поезда и конечно автомобили, невозможно создать без использования зубчатого колеса.

Но так ли уникально человечество в своем изобретении? Мне кажется, природа считает совсем иначе.

Ученые доказали, что Нимфы (личинки) мелких цикадовых насекомых Issus coleoptratus для синхронизации работы конечностей при прыжке используют зубчатую передачу!

Благодаря такому простому механизму задние ноги насекомого начинают двигаться удивительно слаженно — с разницей не более чем в 30 микросекунд (миллионных долей секунды).

Зубчики на задних конечностях Issus coleoptratus были описаны еще в пятидесятых годах, однако установить, что они работают, как сцепленные шестеренки, оказалось не так-то просто: для этого потребовалось отснять прыжки насекомых с очень высоким временным разрешением (5000 кадров в секунду).

Когда одна конечность начинается двигаться для прыжка, ее шестеренка передает силу на другую конечность и активирует ее движение. Левые и правые мышцы задних конечностей приводятся в движение каждая отдельно — парой двигательных нейронов.
Эти нейроны действуют синхронно, обеспечивая одинаковую силу напряжения парных мышц. Но скорость передачи сигнала по нейронам была бы недостаточной для того, чтобы обеспечить почти идеальную слаженность движения ног в начале прыжка, которую и обеспечивает простой механизм шестеренок.

Вот такие занимательные факты, для широкой и думающей аудитории.
Благодарю за внимание!

При подготовке статьи использованы материалы с рессурсов
Элементы
Википедия

Шестерни и звездочки: особенности, сравнение, материалы изготовления

Шестерни и звездочки: особенности, сравнение, материалы изготовления

Шестерни и звездочки: особенности, сравнение, материалы изготовления

Звезды и шестерни – разновидности зубчатого колеса, имеющие схожий внешний вид и широкое применение в машиностроительной сфере. Но конструкция и функциональное назначение этих деталей имеют существенные различия.

Назначение деталей

Профессиональное изготовление шестеренок позволяет в короткие сроки создавать элементы зубчатых передач. Шестерня имеет вид диска с нарезанными зубьями, посредством которых она зацепляется с другими шестернями механизма. Вращаясь, шестерня приводит в движение соседние зубчатые колеса, тем самым обеспечивается передача крутящего момента.

Звездочка тоже имеет вид зубчатого колеса, но зацепляется такая деталь с зубьями цепей, лент и ремней, способствуя их перемещению. Звезды работают напрямую с конструкцией и не зацепляются друг с другом.

Зубчатые передачи с шестернями отличаются большей универсальностью и износостойкостью, их часто применяют в тяжелых машинах и высоконагруженных системах. В это же время механизмы на основе ведущей и ведомой звезд встречаются в простых аппаратах: пленочных проекторах, печатных установках и т. д. Но и в производстве автомобилей, военной и сельскохозяйственной техники звездочки также находят применение.

Конструктивное исполнение

Отличие звезды от шестерни легко отследить и по конструктивному исполнению зуба, технологиям его нарезания. Зубья звездочек формируются особым образом, чтобы обеспечить полное совпадение с отверстиями/пазами других компонентов цепной передачи. Нарезание зубьев на шестерне несколько проще, поскольку в сцеплении участвуют одинаковые детали, часто имеющие стандартные модули. Но и здесь важно обеспечить правильные геометрические показатели детали, соблюсти технологии производства в соответствии с предусмотренным классом точности.

Также различие наблюдается в расположении зубьев. На звездах зубья всегда расположены только на внешней части элемента, в шестерне же зубья нарезаются как с внешней, так и с внутренней стороны.

Материалы производства

Изготовление звездочек и шестеренок позволяет применять различные материалы: железо, чугун, бронзу, легированные и углеродистые стали. В некоторых случаях применяются полиамид, капролон, фторопласт. На выбор материала влияет конструктивное исполнение детали, нагрузка и условия будущей эксплуатации, требования к работе элемента (бесшумность, плавность хода и т. д.).

Металлические шестерни и звезды применяются в машино- и судостроении, в механизмах пищевой и горнодобывающей промышленности, в буровой и подъемной технике, в станках, гидромашинах и т. д.

Шестеренки как работают

Термин «часовой механизм» применяется к полностью собранным часам без корпуса. Часовой механизм состоит из: шестереночного механизма с двигателем в виде заводной пружины, которая приводит в движение этот механизм, и анкерного механизма, сдерживающего распускание пружины и контролирующего скорость вращения шестеренок.

Если к часовому механизму добавить стрелки, то они будут регистрировать скорость вращения шестереночного механизма на циферблате.

Основные узлы механических часов собираются на платине — никель-серебряной пластине, которая является основанием часового механизма. Никель-серебряный сплав используется в швейцарской часовой промышленности по причине своей механической прочности и долговечности.

Кроме отверстий для крепления осей шестеренок, платина имеет целую серию проточек, впадин и выступов, повышающих ее механическую прочность и дающих возможность разместить детали часового механизма на сравнительно малой площади. Противоположные концы шестеренок крепятся в отверстиях мостов — фасонных деталей, закрепляемых с помощью винтов на платине. Применение мостов облегчает сборку механизма и регулировку осевого люфта.

Для обозначения размера, формы часового механизма и платин, к которым он крепится, используется термин калибр (Caliber). В Швейцарии, в отличие от России, калибры механизма указываются в линиях (Lignes). Одна линия соответствует 2.255мм. Например, круглый калибр в 10 линий будет равен 23.7мм в диаметре. Круглые калибры более распространены, хотя существуют овальные, прямоугольные с резаными краями, восьмиугольные и т.д.

Одной из составляющих точности хода часов является снижение трения. Такие части часового механизма, как оси шестеренок, ось баланса, ось вилки и т.д., опираются на синтетические рубиновые камни, представляющие собой плоские миниатюрные цилиндры с воронками для удержания часового масла.

Применение в часах рубиновых камней обусловлено тем, что потери на трение у передающих пар должны быть минимальны. Этому требованию удовлетворяет рубин, имеющий наименьший коэффициент трения в паре со сталью, еще более снижающийся в процессе эксплуатации. Начало использование рубиновых камней уходит к 1700 году, когда начали использоваться природные рубины.

Использование синтетических камней началось в 1902 году, и сегодня без них не обходится ни одно часовое производство. В зависимости от качества механизма обычно используются 7, 15, 17 камней или 21 камень.

Изменение кинематической схемы часов и введение дополнительных устройств ведет к увеличению числа камней, и в отдельных случаях оно может достигать 68 и даже 126 камней (Calibre 89 Patek Philippe).

В качестве источника энергии, обеспечивающего работу часового механизма применяется спиральная пружина, расположенная в барабане с зубчатым краем.

При заводке часов, пружине сообщается изгибающий момент, который при раскручивании преобразуется в крутящий момент барабана, вращение которого приводит в движение весь часовой механизм.

Недостатком пружинного двигателя является неравномерность крутящего момента, передаваемого набаланс, что приводит к неточности хода часов. Наибольший крутящий момент имеет полностью заведенная пружина, наименьший — раскрученная.

Из-за такой неравномерности крутящего момента возникает погрешность в частоте колебаний баланса. А разница даже в 10 колебаний в сутки дает расхождение с точным временем в две секунды.

В особо точных часах — «Морских хронометрах» (Marine Chronometer) для компенсации разницы момента пружины применяется устройство, называемое улитка usee). Оно представляет собой конус, основанием которого является главная шестеренка часового механизма, на который спирально навита цепь. Один конец цепи зацеплен за основание конуса, другой конец — за внешнюю поверхность пружинного барабана. Когда пружина заведена и имеет максимальный момент, цепь намотана на конус полностью, при этом конус оказывает максимальное сопротивление вращению за счет силы трения.

По мере того, как пружина разворачивается, момент пружины уменьшается. Одновременно с уменьшением момента пружины уменьшается и усилие требуемое для поворота конуса. Таким образом, при правильно рассчитанном конусе, момент пружины будет постоянно одинаков, что обеспечит высокую точность хода часового механизма.

Для завода наручных часов также используется механизм автоподзавода. Классический механизм состоит из ротора (инерционного сектора), оборачивающегося вокруг центральной оси часов, и реверсивного устройства, обеспечивающего преобразование двухстороннего вращения ротора в одностороннее вращение вала пружинного барабана.

При различных движениях запястья руки, под действием силы тяжести, ротор поворачивается вокруг своей оси, предавая через зубчатую передачу вращение на вал заводной пружины, заводя ее. В таких часах пружинный барабан устроен таким образом, что во время завода пружины, при достижении максимального момента, пружина будет проскальзывать, предотвращая поломку часового механизма.

Для передачи энергии от пружины через шестереночный механизм к балансу, а также поддержания его колебаний и управления скоростью вращения шестереночного механизма, служит анкерный механизм.

Анкерный механизм состоит из анкерного колеса (шестеренки), как правило, с 15 зубчиками, анкерной вилки, с впрессованными в паллеты синтетическими рубинами, и баланса.

Анкер периодически освобождает зубчатую передачу и преобразует энергию пружины в импульсы, передаваемые балансу для поддержания его колебаний со строго определенным периодом, и преобразование этих колебаний в равномерное вращение шестереночного механизма.

Изогнутые концы анкерной вилки называются паллетами. Их две — входная и выходная.

При подъеме входной паллеты одновременно опускается выходная, и анкерное колесо поворачивается на один зубец.

Затем поднимается выходная паллета и опускается входная, анкерное колесо поворачивается еще на один зубец и т.д.

Во время подъема входной паллеты, под действием анкера, баланс поворачивается на пол-оборота до ограничителя, при этом собственная пружина баланса сворачивается.

Во время опускания входной паллеты, под действием собственной разворачивающейся пружины, баланс совершает движение в обратную сторону до второго ограничителя.

Таким образом, баланс постоянно совершает строго ограниченные полуколебания, уравновешивая тем самым ход часового механизма.

Поскольку само балансное колесо (баланс) представляет собой двойной маятник, то на точность его хода, как и в случае с простым маятником, оказывают влияние температура, трение и сила притяжения Земли. Так как балансное колесо делают из металла, то оно, как и все металлы, подвержены расширению и сжатию под действием температуры. Для минимизации этого влияния колесо делают биметаллическим: из материалов с разным коэффициентом расширения, например, стали и цинка.

Для уменьшения силы трения концы оси баланса (цапфы) делают очень тонкими, порядка 0.07-0.08 мм. Поэтому при неосторожном обращении с часами может произойти поломка цапфы. С целью предохранения оси баланса от поломки, для крепления баланса в платине и мосте используют противоударный механизм.

В обычной конструкции узла баланса сквозные камни, в которых находятся цапфы, жестко запрессовывают в отверстия платины и моста, а накладные камни — в отверстия накладок, привинченных к плоскостям платины и моста. Между камнями оставляют зазоры, заполняемые при сборке узла часовым маслом. В противоударном механизме оси баланса запрессованы в специальные подвижные опоры.

Подвижная опора устроена таким образом, что при осевом ударе ось баланса будет смещаться вверх до тех пор, пока широкая часть оси баланса не упрется в узкое отверстие сквозного камня, приняв на себя, таким образом, силу удара. При боковом ударе ось баланса будет смещаться в бок до тех пор, пока не упрется своей утолщенной частью в стенку отверстия опоры. Таким образом, вместо тонких цапф, все нагрузки принимают на себя утолщенные части оси баланса, предохраняя первые от поломки и изгиба.

Для компенсации явления гравитации на анкерный механизм были изобретены сначала турбийонный регулятор в 1795 году, а затем в начале XX века — карусель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *