От чего зависит кпд электрической машины
Исследование зависимости мощности и КПД источника тока от внешней нагрузки
Коэффициент полезного действия машины или механизма – это важная величина, характеризующая энергоэффективность данного устройства. Понятие используется и в повседневной жизни. Например, когда человек говорит, что КПД его усилий низкий, это значит, что сил затрачено много, а результата почти нет. Величина измеряет отношение полезной работы ко всей совершенной работе.
Согласно формуле, чтобы найти величину, нужно полезную работу разделить на всю совершенную работу. Или полезную энергию разделить на всю израсходованную энергию. Этот коэффициент всегда меньше единицы. Работа и энергия измеряется в Джоулях. Поделив Джоули на Джоули, получаем безразмерную величину. КПД иногда называют энергоэффективностью устройства.
Если попытаться объяснить простым языком, то представим, что мы кипятим чайник на плите. При сгорании газа образуется определенное количество теплоты. Часть этой теплоты нагревает саму горелку, плиту и окружающее пространство. Остальная часть идет на нагревание чайника и воды в нем. Чтобы рассчитать энергоэффективность данной плитки, нужно будет разделить количество тепла, требуемое для нагрева воды до температуры кипения на количество тепла, выделившееся при горении газа.
Данная величина всегда ниже единицы. Например, для любой атомной электростанции она не превышает 35%. Причиной является то, что электростанция представляет собой паровую машину, где нагретый за счет ядерной реакции пар вращает турбину. Большая часть энергии идет на нагрев окружающего пространства. Тот факт, что η не может быть равен 100%, следует из второго начала термодинамики.
Асинхронные механизмы
Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:
- простое изготовление;
- низкая цена;
- надёжность;
- незначительные эксплуатационные затраты.
Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.
Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.
Примеры расчета КПД
Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.
Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу. Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.
Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.
Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж
Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.
От чего зависит величина КПД
Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.
А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.
Значения показателя
В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.
На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.
Мощность стандартного двигателя увеличивается следующими способами:
- подключение к системе многоцилиндрового агрегата;
- применение специального топлива;
- замена некоторых деталей;
- перенос места сжигания бензина.
КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.
Мощность и КПД
Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.
Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.
Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.
Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.
Формула работы в физике
Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.
Решение примеров
Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.
Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:
- тяжесть — mg;
- реакция опоры — N;
- трение — Ftr;
- тяга — F.
Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.
При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.
Это интересно
Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.
Для сравнения, коэффициенты полезного действия различных устройств:
- гидроэлектростанций 93-95%;
- АЭС – не более 35%;
- тепловых электростанций – 25-40%;
- бензинового двигателя – около 20%;
- дизельного двигателя – около 40%;
- электрочайника – более 95%;
- электромобиля – 88-95%.
Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.
1.6 Потери энергии и коэффициент полезного действия
Любое преобразование энергии, в том числе и электромеханическое, сопровождается потерями, т.е. тепловыделением в различных элементах машины. Имеет место три основных вида потерь: механические, магнитные и электрические;
Механические потери обусловлены трением в подшипниках, скользящих электрических контактах, а также затраты на вентиляцию. Механические потери определяются только частотой вращения и не зависят от величины нагрузки (тока обмотки якоря).
Потери в подшипниках определяются их типом (качения — скольжения, шариковые – роликовые), состояние трущихся поверхностей, видом смазки.
Потери на трение в щёточных контактах
,
где — коэффициент трения;
— удельное давление на щетку;
— площадь контактной поверхности всех щеток;
— окружная скорость коллектора:
где — диаметр коллектора;
— скорость вращения коллектора в об/мин.
В самовентилируемых машинах потери на вентиляцию определяются по эмпирической формуле:
где коэффициент зависит от конструкции машин;
-расход воздуха;
— окружная скорость вентилятора по наружному диаметру лопаток.
Общие механические потери:
В машинах средней мощности (10÷500 кВт) эти потери приблизительно составляют 2 ÷ 0,5 % от номинальной мощности.
Магнитные потери включают в себя потери на гистирезис (перемагничивание) и вихревые токи.
Потери на гистерезисе определяются площадью его петли, пропорциональны частоте и квадрату индукции
Потери на вихревые токи:
где К — коэффициент определяемый качеством стали магнитопровода;
— толщина листов шихтовки магнитопровода;
— удельное электрическое сопротивление материала магнитопровода.
К магнитным потерям добавляются некоторые неучтенные потери
Таким образом, магнитные потери в электрических машинах:
Существующие электрические стали имеют магнитные потери 1 ÷ 2,5 Вт/кг при = 1 Тл, = 50 Гц.
Электрические потери , или потери в обмотках, Они зависят от нагрузки электрической машины. В свою очередь сопротивление обмотки зависит от его температуры.
КПД электрической машины:
где , — подведённая и полезная мощности соответственно;
Составляющие потерь приблизительно:
общих потерь
КПД электрических машин колеблется в пределах 0,7 до 0,985
1.7 Нагревание и охлаждение электрических машин
Решающую роль при работе электрической машины играет нагрев его обмоток. Этот нагрев, как отличалось обусловлен различными потерями (потери в обмотках статора и ротора, на гистерезис, трение и т.п.), которые учитываются коэффициентом полезного действия:
где — суммарная мощность потерь в электродвигателе, превращающаяся в тепло;
— номинальная мощность электродвигателя;
— номинальный КПД электродвигателя.
Вследствие непрерывного выделения тепла при работе двигателя его температура постепенно повышается. Данное повышение продолжается до тех пор, пока количество тепла, отдаваемое поверхностью двигателя окружающей среде, не будет равным количеству тепла, возникающего в электродвигателе. Наибольшая допустимая температура двигателя ограничивается термической стойкостью изоляции его обмотки, которая является самым ответственным элементом машины, определяющим срок службы электродвигателя с максимальным использованием его мощности. Изоляционные материалы, обмоток применяемые в электрических машинах, делятся по нагревостойкости на основные классы, которые показаны в таблице 1.1.
Таблица 1.1 Классы изоляции обмоток по нагревостойкости
температура,
В настоящее время наибольшее количество двигателей изготавливаются с изоляцией классов В и F. К классу В относятся слюда, асбест, стеклянное волокно и др. неорганические материалы. Изоляция класса F включает те же изоляционные материалы, что и для класса В, но сочетание с синтетическими связующими и пропитывающими составами, модифицированными кремнийорганическими соединениями.
Для двигателей нормируется не допустимая температура обмотки и др. частей машины, а допустимое превышение температуры обмотки над температурой окружающей среды. Эта величина определяется разностью между предельно допустимой температурой и стандартной температурой окружающей среды, которая равна 40 (установлены ГОСТ).
где — допустимое превышение температуры,
— предельно — допустимая температура,
— стандартная температура окружающей среды (40).
Исследование тепловых переходных процессов в двигателе производится при следующих допущениях:
двигатель представляет собой однородное тело с одинаковой теплоемкостью по всему объёму и одинаковой теплоотдачей по всей поверхностью;
теплоотдача во внешнюю среду пропорциональна первой степени разности температур двигателя и окружающей среды;
температура окружающей среды постоянна;
теплоёмкость двигателя, мощность тепловых потерь и теплоотдача не зависят от температуры двигателя.
Уравнение теплового баланса двигателя при неизменной нагрузке и при приведённых допущениях имеет вид
где – количество теплоты, выделяемое двигателем в единицу времени ();
– теплоотдача двигателя – количество теплоты, отдаваемое двигателем в окружающую среду в единицу времени при разности в 1;
– превышение температуры двигателя над температурой окружающей среды;
– теплоёмкость двигателя – количество теплоты, необходимое для повышения температуры двигателя на 1 .
Уравнение теплового баланса показывает, что выделяемое в машине тепло расходуется на повышение температуры двигателя на за время (член ), а часть тепла передается окружающей среде ().
Решение дифференциального уравнения при начальных условиях, имеет следующий вид
где — соответственно конечное (установившееся) и начальное значение превышения температуры двигателя над температурой окружающей среды.
— постоянная времени нагрева двигателя – время, в течение которого превышение температуры от достигло бы установившегося значения при и отсутствии теплоотдачи в окружающую среду,. Если, то
На рисунке 1.3 приведены кривые 1 и 2 нагрева двигателя, соответственно для и при одной и той же
Рисунок 1.3 Тепловые переходные процессы при нагреве двигателя
Если двигатель будет нагружен меньше (), то этому случаю отвечает кривая 3 при условии, что. Если предположить, что процесс нагрева двигателя происходит без отдачи тепла в окружающую среду, то превышение температуры его будет изменяться по линейному закону. Отсюда следует, что постоянная времени нагрева (охлаждения) двигателя равна отрезку, заключенному между перпендикуляром к оси абсцисс, проведённым через точку касания касательной к экспоненциальной кривой , и точкой пересечения этой касательной с осью ординат.
Уравнение охлаждения электродвигателя можно получить из предыдущего выражения, если принять .
где — постоянная времени охлаждения двигателя.
Рисунок 1.4 Тепловые переходные процессы охлаждения двигателя
На рисунке 1.4 представлены кривые процесса охлаждения. Здесь кривая 1 соответствует уменьшению нагрузки, а кривая 2 – отключению двигателя от сети. Кривая 3 – отключению двигателя от сети при начальной температуре двигателя .
В реальных условиях, как показывают эксперименты, экспоненциальная кривая нагрева отличается от теоретической. В начале процесса действительный нагрев идёт быстрее, чем это предусмотрено теоретической кривой. Только при температуре 0,5…0,6 до действительная кривая приближается к экспоненциальной. Поэтому точнее пользоваться средним значением из трёх полученных методом трех касательных: в начале процесса, при; ; .
Постоянная времени охлаждения больше постоянной времени нагрева в 2…3 раза по причине ухудшения условий теплопередачи.
Вопросы для самопроверки по главе
Что изучает электромеханика?
Какие устройства осуществляют электромеханическое преобразование энергии (ЭМП)?
Взаимосвязь каких явлений обуславливает электромеханическое преобразование энергии?
Закон электромагнитной индукции по Максвеллу. Напишите математическое описание.
Перечислите условия возникновения ЭДС.
Отличие ЭДС пульсации от ЭДС движения.
Что выступает в качестве энергоносителя в электромеханических преобразованиях энергии?
Как можно определить направление ЭДС в проводнике пересекающем магнитные силовые линии?
Закон Ампера в математической форме.
От чего зависит направление электромагнитной силы действующей на проводник с током в магнитном поле?
Справедливо ли утверждение, что КПД ЭМП не может быть больше 100%?
Что понимается под принципом обратимости электрических машин?
Какие основные физические элементы необходимы для реализации ЭМП?
Отличие волновой обмотки от петлевой.
Шаг обмотки (результирующий, частичные), соотношения между ними.
Потери энергии в ЭМП.
Методы уменьшения потерь в магнитопроводе ЭМП.
Зависимость КПД электрической машины от нагрузки.
Уравнение теплового баланса электрической машины.
Постоянные нагреватели и охлаждения электрической машины.
Чем определяется предельное значение температуры обмоток электрической машины?
Какие основные активные и изоляционные материалы используются в электрических машинах?
Похожие публикации:
- Счетчик фобос как включить реле форум
- Ite на материнской плате что это
- Что такое средство измерения
- Электроэпилятор своими руками как сделать
От чего зависит кпд электрической машины от первичного напряжения
Что такое кпд двигателя? 3 фактора, влияющих на эффективность работы двигателя
Образование 19 августа 2017
Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.
Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.
Параметры КПД в электродвигателях
Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:
В данной формуле p1 – это подведенная электрическая мощность, p2 – полезная механическая мощность, которая вырабатывается непосредственно двигателем.
Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть.
В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.
Снижение КПД
Механический КПД электродвигателя должен обязательно учитываться при выборе мотора. Очень большую роль играют потери, которые связаны с нагревом двигателя, снижением мощности, реактивными токами. Чаще всего падение КПД связано с выделением тепла, которое естественным образом происходит при работе двигателя.
Причины выделения теплоты могут быть разными: двигатель может нагреваться в процессе трения, а также по электрическим и даже магнитным причинам. В качестве самого простого примера можно привести ситуацию, когда на электрическую энергию было потрачено 1 000 рублей, а работы было произведено на 700 рублей.
В таком случае коэффициент полезного действия будет равен 70%.
Для охлаждения электрических двигателей применяются вентиляторы, которые прогоняют воздух через созданные зазоры. В зависимости от класса двигателей, нагрев может осуществляться до определенной температуры.
Например, двигатели класса A могут нагреваться до 85-90 градусов, класса B – до 110 градусов. В том случае, когда температура превышает допустимую границу, это может свидетельствовать о замыкании статора.
Средний КПД электрических двигателей
Стоит отметить, что КПД электродвигателя постоянного тока (и переменного тоже) изменяется в зависимости от нагрузки:
- При холостом ходе КПД равен 0%.
- При нагрузке 25% КПД равен 83%.
- При нагрузке 50% КПД равен 87%.
- При нагрузке 75% КПД равен 88%.
- При нагрузке 100% КПД равен 87%.
Одна из причин падения коэффициента полезного действия – асимметрия токов, когда подается разное напряжение на каждой из трех фаз. Если, к примеру, на первой фазе будет напряжение 410 В, на второй – 403 В, а на третьей – 390 В, то среднее значение будет равно 401 В.
Читайте также: Как проверить просадку напряжения в сети мультиметром
Асимметрия в данном случае будет равна разнице между максимальным и минимальным напряжением на фазах (410-390), то есть 20 В. Формула КПД электродвигателя для расчета потерь будет иметь вид в нашей ситуации: 20/401*100 = 4.98%.
Это значит, что мы теряем 5% КПД при работе из-за разности напряжений на фазах.
Общие потери и падение КПД
Негативных факторов, которые оказывают влияние на падение КПД электродвигателя, очень много. Есть определенные методики, позволяющие их определять. К примеру, можно определить, есть ли зазор, через который частично передается мощность из сети к статору и далее – на ротор.
Потери в стартере также имеют место, и они состоят из нескольких значений. В первую очередь это могут быть потери, имеющие отношение к вихревым токам и перемагничиванию сердечников статора.
Если двигатель асинхронный, то имеют место дополнительные потери из-за зубцов в роторе и статоре. Также в отдельных узлах двигателя могут возникать вихревые токи. Все это в сумме снижает КПД электродвигателя на 0,5%. В асинхронных моторах учитываются все потери, которые могут возникать при работе. Поэтому диапазон коэффициента полезного действия может варьироваться от 80 до 90%.
Автомобильные двигатели
История развития электрических двигателей начинается с момента открытия закона электромагнитной индукции. Согласно ему, индукционный ток всегда движется таким образом, чтобы противодействовать вызывающей его причине. Именно эта теория легла в основу создания первого электрического двигателя.
Современные модели основаны на этом же принципе, однако кардинально отличаются от первых экземпляров. Электрические моторы стали намного мощнее, компактнее, но самое главное – их КПД значительно увеличился.
Мы уже писали выше о том, какой КПД электродвигателя, и по сравнению с двигателем внутреннего сгорания это потрясающий результат. К примеру, максимальный КПД двигателя внутреннего сгорания достигает 45%.
Преимущества электрического двигателя
Высокий КПД – это главное достоинство подобного мотора. И если двигатель внутреннего сгорания тратит более 50% энергии на нагрев, то в электрическом моторе на нагрев уходит небольшая часть энергии.
Вторым преимуществом является небольшой вес и компактные размеры. Например, компания Yasa Motors создала мотор с весом всего 25 кг. Он способен выдавать 650 Нм, что очень приличный результат. Также такие моторы долговечные, не нуждаются в коробке передач.
Многие владельцы электрокаров говорят об экономичности электрических двигателей, что логично в некоторой степени. Ведь при работе электромотор не выделяет никаких продуктов сгорания.
Однако многие водители забывают о том, что для производства электроэнергии необходимо использовать уголь, газ или обогащенный уран. Все эти элементы загрязняют окружающую среду, поэтому экологичность электродвигателей – это очень спорный вопрос.
Да, они не загрязняют воздух в процессе работы. За них это делают электростанции при производстве электроэнергии.
Повышение эффективности электродвигателей
Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.
Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.
Читайте также: Максимальное напряжение в сети 220 для бытовых приборов
Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока.
Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки.
Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.
Максимальный КПД электродвигателя
В зависимости от типа конструкции, коэффициент полезного действия в электрических двигателях может варьироваться от 10 до 99%. Все зависит от того, какой именно это будет двигатель. Например, КПД электродвигателя насоса поршневого типа составляет 70-90%. Конечный результат зависит от производителя, строения устройства и т. д.
То же самое можно сказать и про КПД электродвигателя подъемного крана. Если он равен 90%, то это значит, что 90% потребляемой электроэнергии пойдет на выполнение механической работы, остальные 10% – на нагрев деталей.
Все же есть наиболее удачные модели электродвигателей, коэффициент полезного действия которых приближается к 100%, но не равен этому значению.
Возможен ли КПД свыше 100%?
Ни для кого не секрет, что электрические двигатели, КПД которых превышает 100%, не могут существовать в природе, так как это противоречит основному закону о сохранении энергии. Дело в том, что энергия не может взяться из ниоткуда и точно так же исчезнуть. Любой двигатель нуждается в источнике энергии: бензине, электричестве.
Однако бензин не вечен, как и электроэнергия, ведь их запасы приходится пополнять. Но если бы существовал источник энергии, который не нуждался в пополнении, то вполне возможно было бы создать мотор с КПД свыше 100%.
Российский изобретать Владимир Чернышов показал описание двигателя, который основан на постоянном магните, и его КПД, как уверяет сам изобретатель, составляет более 100%.
Гидроэлектростанция как пример вечного двигателя
Для примера возьмем гидроэлектростанцию, где энергия вырабатывается за счет падения с большой высоты воды. Вода вращает турбину, и та производит электричество. Падение воды осуществляется под действием гравитации Земли.
И хотя работа по производству электроэнергии совершается, гравитация Земли не становится слабее, то есть сила притяжения не уменьшается. Далее вода под действием солнечных лучей испаряется и снова поступает в водохранилище. На этом цикл завершается.
В результате электроэнергия выработана, затраты на ее производство возобновлены.
Конечно, можно сказать, что Солнце не вечно, это так, но пару-тройку миллиардов лет оно протянет. Что касается гравитации, то она постоянно совершает работу, вытягивая влагу из атмосферы.
Если сильно обобщить, то гидроэлектростанция – это двигатель, который преобразует механическую энергию в электрическую, и его КПД составляет более 100%. Это дает понять, что искать пути создания электродвигателя, КПД которого может быть более 100%, прекращать не стоит.
Ведь не только гравитацию можно использовать в качестве неисчерпаемого источника энергии.
Постоянные магниты как источники энергии для двигателей
Второй интересный источник – постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет.
Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось.
Читайте также: Напряжение пробоя термоусадочной трубки
Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.
Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.
Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.
Заключение
КПД электродвигателя – это самый важный параметр, который определяет эффективность работы того или иного мотора. Чем выше КПД, тем лучше мотор.
В двигателе с КПД 95% почти вся затрачиваемая энергия уходит на выполнение работы и только 5% расходуется не по нужде (например, на нагрев запчастей).
Современные дизельные двигатели могут достигать значения КПД 45%, и это считается классным результатом. КПД бензиновых двигателей и того меньше.
Формула КПД электродвигателя
Асинхронный двигатель и стирлинг
Сегодня на рынке представлены асинхронные машины, большей частью которых являются элетрические. Асинхронный механизм преобразовывает электрическую энергию в механическую.
- простота изготовления и относительно низкая стоимость;
- высокая надежность;
- эксплуатационные затраты небольшие.
Формула кпд рассчитывается следующим образом: η = P2 / P1 = (P1 — (Pоб – Pс – Pмх – Pд)) / P1, где Роб =Pоб1 + Роб2 – общие потери в обмотках асинхронного мотора. Для большинства современных механизмов такого типа, коэффициент достигает 80 – 90%.
- Еще одним двигателем внутреннего сгорания, который может работать от любого источника тепла, является двигатель Стирлинга.
- Следует учесть, что такие механизмы используют на космических аппаратах и современных подводных лодках.
- Он работает при любых температурах, не требует дополнительных систем для запуска, при этом их коэффициент полезного действия выше на 50-70, чем обычных двигателей.
Максимальное значение кпд идеального двигателя
Как найти кпд двигателя, чье значение было бы идеальным и равнялось 100%. Возможно ли такое? Ответ на этот вопрос дал еще в 1824 г. инженер С. Карно. В своих разработках он придумал идеальную машину, где формула кпд теплового двигателя выглядит так: η=(T1 — Т2)/ T1.
В результате было выяснено, что достичь 100% коэффициента можно лишь в том случае, если температура охладителя будет равна абсолютному нулю, а это невозможно, поскольку она не может быть ниже температуры воздуха.
Как повысить КПД?
Повышение этого значения – важная техническая задача. Теоретически его можно повысить за счет снижения трения деталей двигателя, уменьшения теплопотерь. В дизелях это достигается за счет турбонаддува. В этом случае уровень полезной энергии возрастает до 50%.
Как видим, КПД двигателя полностью зависит от его типа и конструкции. Ученые же считают, что будущее за электрическими вариантами, поэтому изобретение идеального механизма – вопрос будущего.
От чего зависит кпд электрической машины
Для начала стоит понять, что же такое электродвигатель. В общем понимании — это устройство, служащее для преобразования одного вида энергии в другой. В данном случае электрической в механическую по средствам электромагнитной индукции. Кроме того, предусмотрена возможность работы и в обратном режиме, превращая механическую энергию в электрическую.
Как и любая электрическое устройство, электродвигатель обладает рядом основных рабочих характеристик: момент вращения, мощность, частота вращения, заявленные величины тока и напряжения, ну и, конечно же, коэффициент полезного действия.
Вращающий момент – это, по сути, сила вращения вала двигателя. Именно моментом вращения определяется мощность двигателя. Расчёт производится по формуле:
Мощность – параметр, показывающий величину полезной работы, совершаемой двигателем. Формула для расчёта:
Частота вращения – параметр, который, как правило, указан в паспорте изделия и зависит напрямую от числа пар полюсов. Расчётная формула: .
Номинальный ток – та величина тока, при которой оборудование может работать неограниченное количество времени при нагреве токоведущих частей.
Номинальное напряжение – напряжение на которое спроектирована сеть, либо конкретное оборудование.
Коэффициент полезного действия – параметр, показывающий эффективность процесса преобразования одного вида энергии в другой. То есть, чем выше КПД, тем эффективнее работа электродвигателя.
Каким образом КПД определяется.
Формула расчёта КПД очень проста: это отношение полезной мощности к подведённой. Вид записи следующий:
Где – полезная мощность, — подведённая мощность.
Величина эта лежит в диапазоне от 0 до 1. Чем значение больше, тем эффективнее работа. Например, при КПД равно 0,6 40% мощности будет потеряны в процессе преобразования, такой электродвигатель эффективным считаться не может.
Важно: КПД не является статичным параметром и может изменяться в зависимости от нагрузки.
Причины снижения КПД.
К сожалению, привести КПД к единице, или же 100% просто физически невозможно. Обусловлено это рядом потерь, приводящих к снижению коэффициента:
Электрические – зависят от величины загрузки самого оборудования. Возникают из-за перегрева обмотки статора, что происходит при преодолении сопротивления материала силой тока;
Магнитные – в основном, возникают из-за образования вихревых токов, а так же при перемагничивании железа статора и ротора;
Механические – являются следствием работы подшипников, на которых вращается вал, потери возникают из-за трения. И в малой доли сопротивлением воздуха крыльчатке вентилятора.
Способы повышения КПД.
Для начала стоит понимать, что реальный КПД может отличаться от заявленного изготовителем на величину от 4 до 7%, что чаще всего является следствием неравномерности распределения фаз и напряжения питания. Поднять коэффициент полезного действия электродвигателя можно, но сделать это нелегко.
Если говорить открыто, то прямого способа именно повысить КПД не существует, есть лишь способы сократить потери.
Так электрические можно сократить, уменьшив температуру и скорость нагрева материалов, из которых выполнена обмотка, что достигается за счёт использования проводов с меньшим удельным сопротивлением. Однако, это приведёт к удорожанию.
Механические можно свести к минимуму благодаря использованию подшипников из более качественных материалов, а так же замене материала крыльчатки на более современный, что позволит свести сопротивление воздуху к минимальным значениям.
Для снижения магнитных потерь необходимо при наборе сердечника использовать электромагнитную сталь высшего класса с надёжной изоляцией.
Кроме того, можно «выиграть» пару процентов за счёт частотного преобразователя, однако вариант доступен только для асинхронной машины.
Мнение эксперта: зачастую поднять КПД на пару процентов помогает контроль уровня напряжения электрической сети.
Средний и максимальный КПД электродвигателя.
Немного выше указывалось, что КПД зависит не только от потерь, но и от заданной нагрузки. Рассмотрим простой пример: есть электродвигатель с заявленным КПД 92%, питающая сеть не идеальна, есть лёгкая асимметрия токов.
На холостом ходу КПД равен 0. При полной нагрузке максимальное КПД составит 87%. Нагрузив двигатель на 25%, КПД его станет 83%, нагрузив на 50% — получим КПД 87%, при нагрузке в 75% КПД составим 88%. Что из этого следует?
Не трудно проследить, что средний КПД электродвигателя в данном случае составляет 87%, он же отличается от заявленного на 5% ввиду асимметрии токов.
Максимальный же КПД составил 88% при нагрузке 0,7 – 0,8 от номинальной. Данный режим работы является наиболее эффективным и экономически выгодным – максимум пользы при минимуме затрат.
Может ли быть КПД выше 100%? Нет, даже в теории это невозможно. Хотя бы даже по той причине, что энергия не может возникнуть из ниоткуда, точно так же она не может попросту раствориться. Единственный вариант – нескончаемый источник энергии, при существовании которого КПД двигателя может составить 100%, а, возможно, вовсе превзойти его.
Подводя итоги, смело можно заявить – КПД двигателя важнейший параметр, определяющий эффективность работы и мощность. Тут принцип простой до глупости: больше – лучше. Конечно, достижение максимального результата в 100% на данный момент технически невозможно ввиду большого количества факторов, влияющих на работу. Но прогресс не стоит на месте и кто знает, может быть через 10, а то и через 5 лет, максимум уже будет достигнут.
1.6 Потери энергии и коэффициент полезного действия
Любое преобразование энергии, в том числе и электромеханическое, сопровождается потерями, т.е. тепловыделением в различных элементах машины. Имеет место три основных вида потерь: механические, магнитные и электрические;
Механические потери обусловлены трением в подшипниках, скользящих электрических контактах, а также затраты на вентиляцию. Механические потери определяются только частотой вращения и не зависят от величины нагрузки (тока обмотки якоря).
Потери в подшипниках определяются их типом (качения — скольжения, шариковые – роликовые), состояние трущихся поверхностей, видом смазки.
Потери на трение в щёточных контактах
,
где — коэффициент трения;
— удельное давление на щетку;
— площадь контактной поверхности всех щеток;
— окружная скорость коллектора:
где — диаметр коллектора;
— скорость вращения коллектора в об/мин.
В самовентилируемых машинах потери на вентиляцию определяются по эмпирической формуле:
где коэффициент зависит от конструкции машин;
-расход воздуха;
— окружная скорость вентилятора по наружному диаметру лопаток.
Общие механические потери:
В машинах средней мощности (10÷500 кВт) эти потери приблизительно составляют 2 ÷ 0,5 % от номинальной мощности.
Магнитные потери включают в себя потери на гистирезис (перемагничивание) и вихревые токи.
Потери на гистерезисе определяются площадью его петли, пропорциональны частоте и квадрату индукции
Потери на вихревые токи:
где К — коэффициент определяемый качеством стали магнитопровода;
— толщина листов шихтовки магнитопровода;
— удельное электрическое сопротивление материала магнитопровода.
К магнитным потерям добавляются некоторые неучтенные потери
Таким образом, магнитные потери в электрических машинах:
Существующие электрические стали имеют магнитные потери 1 ÷ 2,5 Вт/кг при = 1 Тл, = 50 Гц.
Электрические потери , или потери в обмотках, Они зависят от нагрузки электрической машины. В свою очередь сопротивление обмотки зависит от его температуры.
КПД электрической машины:
где , — подведённая и полезная мощности соответственно;
Составляющие потерь приблизительно:
общих потерь
КПД электрических машин колеблется в пределах 0,7 до 0,985
1.7 Нагревание и охлаждение электрических машин
Решающую роль при работе электрической машины играет нагрев его обмоток. Этот нагрев, как отличалось обусловлен различными потерями (потери в обмотках статора и ротора, на гистерезис, трение и т.п.), которые учитываются коэффициентом полезного действия:
где — суммарная мощность потерь в электродвигателе, превращающаяся в тепло;
— номинальная мощность электродвигателя;
— номинальный КПД электродвигателя.
Вследствие непрерывного выделения тепла при работе двигателя его температура постепенно повышается. Данное повышение продолжается до тех пор, пока количество тепла, отдаваемое поверхностью двигателя окружающей среде, не будет равным количеству тепла, возникающего в электродвигателе. Наибольшая допустимая температура двигателя ограничивается термической стойкостью изоляции его обмотки, которая является самым ответственным элементом машины, определяющим срок службы электродвигателя с максимальным использованием его мощности. Изоляционные материалы, обмоток применяемые в электрических машинах, делятся по нагревостойкости на основные классы, которые показаны в таблице 1.1.
Таблица 1.1 Классы изоляции обмоток по нагревостойкости
температура,
В настоящее время наибольшее количество двигателей изготавливаются с изоляцией классов В и F. К классу В относятся слюда, асбест, стеклянное волокно и др. неорганические материалы. Изоляция класса F включает те же изоляционные материалы, что и для класса В, но сочетание с синтетическими связующими и пропитывающими составами, модифицированными кремнийорганическими соединениями.
Для двигателей нормируется не допустимая температура обмотки и др. частей машины, а допустимое превышение температуры обмотки над температурой окружающей среды. Эта величина определяется разностью между предельно допустимой температурой и стандартной температурой окружающей среды, которая равна 40 (установлены ГОСТ).
где — допустимое превышение температуры,
— предельно — допустимая температура,
— стандартная температура окружающей среды (40).
Исследование тепловых переходных процессов в двигателе производится при следующих допущениях:
двигатель представляет собой однородное тело с одинаковой теплоемкостью по всему объёму и одинаковой теплоотдачей по всей поверхностью;
теплоотдача во внешнюю среду пропорциональна первой степени разности температур двигателя и окружающей среды;
температура окружающей среды постоянна;
теплоёмкость двигателя, мощность тепловых потерь и теплоотдача не зависят от температуры двигателя.
Уравнение теплового баланса двигателя при неизменной нагрузке и при приведённых допущениях имеет вид
где – количество теплоты, выделяемое двигателем в единицу времени ();
– теплоотдача двигателя – количество теплоты, отдаваемое двигателем в окружающую среду в единицу времени при разности в 1;
– превышение температуры двигателя над температурой окружающей среды;
– теплоёмкость двигателя – количество теплоты, необходимое для повышения температуры двигателя на 1 .
Уравнение теплового баланса показывает, что выделяемое в машине тепло расходуется на повышение температуры двигателя на за время (член ), а часть тепла передается окружающей среде ().
Решение дифференциального уравнения при начальных условиях, имеет следующий вид
где — соответственно конечное (установившееся) и начальное значение превышения температуры двигателя над температурой окружающей среды.
— постоянная времени нагрева двигателя – время, в течение которого превышение температуры от достигло бы установившегося значения при и отсутствии теплоотдачи в окружающую среду,. Если, то
На рисунке 1.3 приведены кривые 1 и 2 нагрева двигателя, соответственно для и при одной и той же
Рисунок 1.3 Тепловые переходные процессы при нагреве двигателя
Если двигатель будет нагружен меньше (), то этому случаю отвечает кривая 3 при условии, что. Если предположить, что процесс нагрева двигателя происходит без отдачи тепла в окружающую среду, то превышение температуры его будет изменяться по линейному закону. Отсюда следует, что постоянная времени нагрева (охлаждения) двигателя равна отрезку, заключенному между перпендикуляром к оси абсцисс, проведённым через точку касания касательной к экспоненциальной кривой , и точкой пересечения этой касательной с осью ординат.
Уравнение охлаждения электродвигателя можно получить из предыдущего выражения, если принять .
где — постоянная времени охлаждения двигателя.
Рисунок 1.4 Тепловые переходные процессы охлаждения двигателя
На рисунке 1.4 представлены кривые процесса охлаждения. Здесь кривая 1 соответствует уменьшению нагрузки, а кривая 2 – отключению двигателя от сети. Кривая 3 – отключению двигателя от сети при начальной температуре двигателя .
В реальных условиях, как показывают эксперименты, экспоненциальная кривая нагрева отличается от теоретической. В начале процесса действительный нагрев идёт быстрее, чем это предусмотрено теоретической кривой. Только при температуре 0,5…0,6 до действительная кривая приближается к экспоненциальной. Поэтому точнее пользоваться средним значением из трёх полученных методом трех касательных: в начале процесса, при; ; .
Постоянная времени охлаждения больше постоянной времени нагрева в 2…3 раза по причине ухудшения условий теплопередачи.
Вопросы для самопроверки по главе
Что изучает электромеханика?
Какие устройства осуществляют электромеханическое преобразование энергии (ЭМП)?
Взаимосвязь каких явлений обуславливает электромеханическое преобразование энергии?
Закон электромагнитной индукции по Максвеллу. Напишите математическое описание.
Перечислите условия возникновения ЭДС.
Отличие ЭДС пульсации от ЭДС движения.
Что выступает в качестве энергоносителя в электромеханических преобразованиях энергии?
Как можно определить направление ЭДС в проводнике пересекающем магнитные силовые линии?
Закон Ампера в математической форме.
От чего зависит направление электромагнитной силы действующей на проводник с током в магнитном поле?
Справедливо ли утверждение, что КПД ЭМП не может быть больше 100%?
Что понимается под принципом обратимости электрических машин?
Какие основные физические элементы необходимы для реализации ЭМП?
Отличие волновой обмотки от петлевой.
Шаг обмотки (результирующий, частичные), соотношения между ними.
Потери энергии в ЭМП.
Методы уменьшения потерь в магнитопроводе ЭМП.
Зависимость КПД электрической машины от нагрузки.
Уравнение теплового баланса электрической машины.
Постоянные нагреватели и охлаждения электрической машины.
Чем определяется предельное значение температуры обмоток электрической машины?
Какие основные активные и изоляционные материалы используются в электрических машинах?
КПД электродвигателей
Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.
Определение КПД электродвигателя
Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:
Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.
Факторы, влияющие на величину КПД
Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:
- электрические;
- магнитные;
- механические.
Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.
Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.
Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором. Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.
Способы повысить КПД двигателя
Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.
Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.
Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.
Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.
В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.
От чего зависит КПД
Речь идёт о КПД на этом проекте?
Здесь КПД (коэффицинт полезного действия) — соотношение количества лучший ответов пользователя и общего количества его ответов.
Сейчас у Вас КПД 2,2%, потому что из 90 ответов признаны лучшими — 2.
Коэффициент полезного действия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.
В электрических двигателях КПД — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника.
В тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты.
В электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.
Для вычисления КПД разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и других аналогичных соотношений. В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.
Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД тепловых электростанций достигает 35-40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением — 40-50% , динамомашин и генераторов большой мощности — 95%, трансформаторов — 98%. КПД процесса фотосинтеза составляет обычно 6-8%, у хлореллы он достигает 20-25%. У тепловых двигателей в силу второго начала термодинамики КПД имеется верхний предел, определяемый особенностями термодинамического цикла (кругового процесса) , который совершает рабочее вещество. Наибольшим КПД обладает цикл Карно.
Различают КПД отдельного элемента (ступени) машины или устройства и КПД, характеризующий всю цепь преобразований энергии в системе. КПД первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и другие виды КПД. Общий КПД системы равен произведению частных КПД, или КПД ступеней.
В технической литературе КПД иногда определяют таким образом, что он может оказаться больше единицы. Подобная ситуация возникает, если определять КПД отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты. Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный КПД установки меньше единицы, рассмотренный КПД h=Wпол/Wзатр может оказаться больше единицы. Например, тепловой КПД кондиционеров в среднем равен 300-400%.
Похожие публикации:
- Как сделать двигатель для самолета
- Вру нежилого помещения что это
- Как прошить ардуино уно
- Кто выдает наряд допуск на производство работ
КПД электродвигателей
Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.
Определение КПД электродвигателя
Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:
Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.
Факторы, влияющие на величину КПД
Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:
- электрические;
- магнитные;
- механические.
Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.
Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.
Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором. Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.
Способы повысить КПД двигателя
Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.
Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.
Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.
Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.
В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.
Для оформления заказа позвоните менеджерам компании Кабель.РФ ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту zakaz@cable.ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.